

Series STRA Duct Mounted Airflow Measurement Station

Specifications - Installation and Operating Instructions

SELECTABLE SIZES:

1. UVAL OR RECTANGULAR "H" OR "W" DIMENSIONS IN INCHES CAN BE THE FOLLOWING: 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 44, 48, 52, 56, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114 or 120 2. CIRCULAR "D" DIMENSION IN INCHES CAN BE THE FOLLOWING: 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 36, 40, 44, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114 or 120

The Series STRA Airflow Measurement Station consists of single or multiple airflow elements, factory mounted and pre-piped in a casing designed for flanged connection to the ductwork. The station also incorporates an airflow straightening section using a honeycomb which has a 1/2 inch opening by 3 inch depth. Standard materials consist of a G90 galvanized casing, 6063-T5 anodized aluminum flow sensors, and 3003 aluminum air flow straightener, suitable for most HVAC applications. The Series STRA Air Flow Measurement Station has been developed for use in duct systems having a highly turbulent condition at the point of measurement.

The airflow averaging element, utilized in the Series STRA, is a head type device, which generates a differential (velocity) pressure signal similar to the orifice, venturi, and other head producing primary elements. The Series STRA is constructed so that strategically located sensing ports (based on duct size) continually sample the total and static pressures, when inserted normal to flow. The total pressures sensed by the upstream ports are continually averaged within the element in an isolated chamber. The static sensing ports (located where the influence of the velocity head is zero) are averaged in a second isolation chamber. Multiple elements are manifolded together for connection to a differential measurement device (gage, transmitter, etc.) for flow measurement and indication purposes.

SPECIFICATIONS

Accuracy: Within 2% of actual flow when installed in accordance with published recommendations.

K Factor: 0.97.

Velocity Range: 100 to 10,000 fpm (0.51 to 51 m/s).

Wetted Material: Elements: 6063-T5 anodized aluminum; Casings: 16 ga G90 galvanized steel, 3003 aluminum air flow straightener. Temperature Limits: Galvanized Casings and Aluminum Elements 350°F (177°C) continuous operation (in air), 400°F (204°C) intermittent

350°F (177°C) continuous operation (in air), 400°F (204°C) intermittent operation (in air).

Humidity: All Airflow Stations 0 to 100% non condensing. **Process Connections:** 1/4⁻ compression fittings.

DWYER INSTRUMENTS, INC. P.O. BOX 373 • MICHIGAN CITY, INDIANA 46361, U.S.A.

Phone: 219/879-8000 Fax: 219/872-9057 www.dwyer-inst.com e-mail: info@dwyer-inst.com

Circular Flange Dimensions						
Station	Flange	Flange	Casing			
Size	Thickness	Size	Length "L"			
6″ - 15″	0.064″	1~	8 [~]			
16″ - 44″	0.064″	1-1/2″	8″			
45″ - 72″	0.188″	1-1/2″	10″			
73 [°] & Over	0.188″	2″	12″			

Circular Stations

Standard circular airflow measuring stations include a 16 gage galvanized casing with attached 90° connecting flanges as listed above.

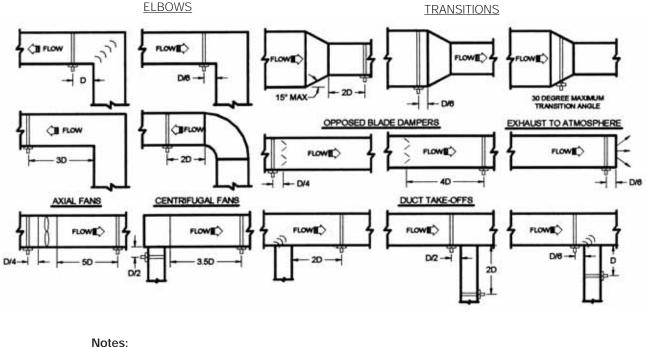
Rectangular Flange Dimensions					
Station	Flange				
Size	Size				
8 [°] - 72 [°]	1-1/2 ⁻				
73 [°] & Over	2 ⁻				

Rectangular Stations

Standard rectangular airflow measuring stations include a 16 gage galvanized casing, 8 inches long, with formed integral 90° connecting flanges as listed above.

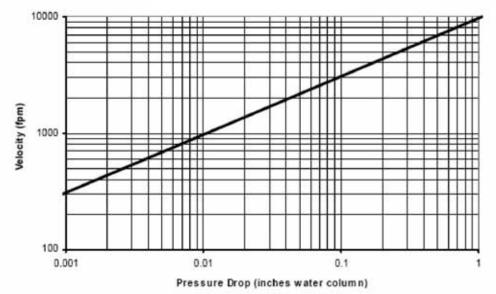
Round Ducts:

D = Duct diam


Oval Flange Dimensions (Optional)							
Station	Flange	Flange	Casing				
Size	Thickness	Size	Length "L"				
Up to 48 [°]	0.064 [~]	1-1/2 ⁻	8 ⁻				
Over 48 [°]	0.188 [~]	1-1/2 ⁻	10 ⁻				

Oval Stations

Standard oval airflow measuring stations include an 18 gage galvanized casing, 8 inches long between beads with 1-1/4 inch connecting sleeve on each end (10-1/2 inch overall length). Actual O.D. dimensions are 1/4 inch less than specified duct I.D. dimensions.


INSTALLATION

The elements may be installed in any duct configuration. However, the accuracy of the installation is dependent on the flow conditions in the duct. The minimum installation requirements for the elements based upon a uniform velocity profile approaching the duct disturbance for flow rates less than 2,500 fpm are shown below. Add one duct diameter to the installation requirements shown below for each additional flow rate of 1000 fpm. These are not ideal locations. It is always best to locate the elements as far as possible from all duct disturbances, with upstream disturbances being the most critical consideration.

	Rectangular Ducts:	H = Duct height
neter	$D = \sqrt{4HW}$	W = Duct width
	√п π	

STRA RESISTANCE to AIRFLOW

SERIES STRA SPECIFICATION GUIDE

1. Provide where indicated and/or scheduled airflow traverse elements capable of continuously monitoring the fan or duct air volumes they serve.

2. Each element shall be designed and built to comply with, and provide results in accordance with, accepted practice for duct system traversing as defined in the ASHRAE Handbook of Fundamentals, AMCA publication #203, as well as the Industrial Ventilation Handbook. The number of sensing ports on each element, and the quantity of elements utilized at each installation, shall comply with ASHRAE Standard #111 for equal area duct traversing. Each element shall be of a dual integral chambered design.

3. Each airflow measuring element shall contain multiple total and static pressure sensing ports placed along the leading edge of the cylinder. The static pressure chamber shall incorporate dual offset static taps on opposing sides of the averaging chamber, so as to be insensitive to flow angle variations of as much as ± 20 degrees in the approaching airstream.

4. The airflow traverse elements shall be capable of producing steady, nonpulsating signals of true total and static pressure, with an accuracy of 2% of actual flow for operating velocities as low as 180 feet per minute (fpm). Signal amplifying sensors requiring flow correction (K factors) for field calibration are not acceptable.

5. The airflow traverse elements shall not induce a measurable pressure drop, greater than 0.18 inch at 4,000 fpm. The units sound level within the duct shall not be amplified, nor shall additional sound be generated.

6. The probes shall be mounted in an eight inch deep, 16 gauge galvanized steel casing with 90 degree undrilled flanges, fabricated to the duct size, and shall contain multiple airflow traverse elements interconnected as here-in before described.

7. Where primary flow elements are located outside of the manufacturer's published installation guidelines the manufacturer shall be consulted, and approve of any special configurations, such as air equalizers and/or additional and strategically placed measuring points, as may be required.

8. Where the stations are installed in insulated ducts, the airflow passage of the station shall be the same size as the inside airflow dimension of the duct. Station flanges shall be sized to facilitate matching connecting ductwork.

Installation Considerations

1. Primary flow elements shall be installed in strict accordance with the manufacturers published requirements and with ASME guidelines affecting non-standard approach conditions. These elements serve as the primary signals for the airflow systems; it shall be the responsibility of the contractor to verify correct installation to assure that accurate primary signals are obtained.

2. An identification label shall be placed on each unit casing listing model number, size, area, and specified airflow capacity.

Engineering Reference Table

Velocity Versus Velocity Pressure															
V = Velocity in feet per minute Pv = Velocity Pressure in inches H ₂ O															
V	Pv	V	Pv	V	Pv	V	Pv	V	Pv	V	Pv	V	Pv	V	Pv
180	0.0020	620	0.0240	1060	0.0701	1500	0.1403	1940	0.2346	2760	0.4749	3640	0.8260	5300	1.7512
190	0.0023	630	0.0247	1070	0.0714	1510	0.1422	1950	0.2371	2780	0.4818	3660	0.8351	5350	1.7844
200	0.0025	640	0.0255	1080	0.0727	1520	0.1440	1960	0.2395	2800	0.4888	3680	0.8443	5400	1.8180
210	0.0027	650	0.0263	1090	0.0741	1530	0.1459	1970	0.2420	2820	0.4958	3700	0.8535	5450	1.8518
220	0.0030	660	0.0272	1100	0.0754	1540	0.1479	1980	0.2444	2840	0.5028	3720	0.8627	5500	1.8859
230	0.0033	670	0.0280	1110	0.0768	1550	0.1498	1990	0.2469	2860	0.5099	3740	0.8720	5550	1.920
240	0.0036	680	0.0288	1120	0.0782	1560	0.1517	2000	0.2494	2880	0.5171	3760	0.8814	5600	1.955
250	0.0039	690	0.0297	1130	0.0796	1570	0.1537	2020	0.2544	2900	0.5243	3780	0.8908	5650	1.990
260	0.0042	700	0.0305	1140	0.0810	1580	0.1556	2040	0.2595	2920	0.5316	3800	0.9002	5700	2.025
270	0.0045	710	0.0314	1150	0.0825	1590	0.1576	2060	0.2646	2940	0.5389	3820	0.9097	5750	2.061
280	0.0049	720	0.0323	1160	0.0839	1600	0.1596	2080	0.2697	2960	0.5462	3840	0.9193	5800	2.097
290	0.0052	730	0.0332	1170	0.0853	1610	0.1616	2100	0.2749	2980	0.5536	3860	0.9289	5850	2.133
300	0.0056	740	0.0341	1180	0.0868	1620	0.1636	2120	0.2802	3000	0.5611	3880	0.9386	5900	2.170
310	0.0060	750	0.0351	1190	0.0883	1630	0.1656	2140	0.2855	3020	0.5686	3900	0.9483	5950	2.207
320	0.0064	760	0.0360	1200	0.0898	1640	0.1677	2160	0.2909	3040	0.5762	3920	0.9580	6000	2.244
330	0.0068	770	0.0370	1210	0.0913	1650	0.1697	2180	0.2963	3060	0.5838	3940	0.9678	6050	2.281
340	0.0072	780	0.0379	1220	0.0928	1660	0.1718	2200	0.3017	3080	0.5914	3960	0.9777	6100	2.319
50	0.0076	790	0.0389	1230	0.0943	1670	0.1739	2220	0.3073	3100	0.5991	3980	0.9876	6150	2.358
60	0.0081	800	0.0399	1240	0.0959	1680	0.1760	2240	0.3128	3120	0.6069	4000	0.9975	6200	2.396
370	0.0085	810	0.0499	1250	0.0974	1690	0.1781	2260	0.3184	3140	0.6147	4050	1.0226	6250	2.435
80	0.0090	820	0.0419	1260	0.0990	1700	0.1802	2280	0.3241	3160	0.6225	4100	1.0480	6300	2.474
390	0.0095	830	0.0429	1270	0.1006	1710	0.1823	2300	0.3298	3180	0.6304	4150	1.0737	6350	2.513
400	0.0100	840	0.0440	1280	0.1021	1720	0.1844	2320	0.3356	3200	0.6384	4200	1.0997	6400	2.553
410	0.0105	850	0.0450	1290	0.1037	1730	0.1866	2320	0.3414	3220	0.6464	4250	1.1261	6450	2.593
420	0.0100	860	0.0461	1300	0.1054	1740	0.1888	2360	0.3472	3240	0.6545	4300	1.1527	6500	2.634
430	0.0115	870	0.0472	1310	0.1070	1750	0.1909	2380	0.3531	3260	0.6626	4350	1.1797	6550	2.674
140	0.0113	880	0.0483	1320	0.1086	1760	0.1931	2300	0.3591	3280	0.6707	4400	1.2070	6600	2.715
440 450	0.0121	890	0.0494	1320	0.1103	1770	0.1953	2400	0.3651	3300	0.6789	4450	1.2346	6650	2.757
160	0.0120	900	0.0505	1340	0.1119	1780	0.1955	2420	0.3712	3320	0.6872	4500	1.2625	6700	2.798
400 470	0.0132	910	0.0516	1350	0.1136	1790	0.1975	2440 2460	0.3773	3340	0.6955	4550	1.2023	6750	2.840
180	0.0138	920	0.0528	1360	0.1153	1800	0.1998	2480	0.3773	3360	0.7038	4600	1.3192	6800	2.882
190	0.0144	920	0.0539	1370	0.1170	1810	0.2020	2480	0.3897	3380	0.7030	4650	1.3480	6850	2.925
500	0.0150	930	0.0551	1370	0.1170	1820	0.2040	2500	0.3959	3400	0.7122	4000	1.3480	6900	2.920
	0.0158	940	0.0563	1390	0.1205	1830		2520 2540	0.3939	3400	0.7207	4750	1.4066	7000	3.054
510	0.0162		0.0575	1400	0.1203	1840	0.2088		0.4022	3420	0.7292	4800	1.4000	7100	3.142
520		960 970	0.0575	1400	0.1222	1840	0.2111	2560	0.4088	3440 3460	0.7378	4800	1.4304		3.231
530	0.0175		0.0587	1410	0.1239	1860	0.2134	2580						7200	3.231
540	0.0182	980					0.2157	2600	0.4214	3480	0.7550	4900	1.4969	7300	3.322
550	0.0189	990	0.0611	1430	0.1275	1870	0.2180	2620	0.4280	3500	0.7637	4950	1.5276	7400	3.414
560	0.0196	1000	0.0623	1440	0.1293	1880	0.2203	2640	0.4345	3520	0.7725	5000	1.5586	7500	3.506
570	0.0203	1010	0.0636	1450	0.1311	1890	0.2227	2660	0.4411	3540	0.7813	5050	1.5899	7600	3.601
580	0.0210	1020	0.0649	1460	0.1329	1900	0.2251	2680	0.4478	3560	0.7901	5100	1.6216	7700	3.696
590	0.0217	1030	0.0661	1470	0.1347	1910	0.2274	2700	0.4545	3580	0.7990	5150	1.6535	7800	3.793
600	0.0224	1040	0.0674	1480	0.1366	1920	0.2298	2720	0.4612	3600	0.8080	5200	1.6858	7900	3.890
610	0.0232	1050	0.0687	1490	0.1384	1930	0.2322	2740	0.4681	3620	0.8170	5250	1.7184	8000	3.990

Based on Standard Air Density of 0.075 Ibm It's which is Air at 68°F. 50% Relative Humidity, and 29.92 Hg. The equation for converting air volume (Q) into velocity (V) and velocity pressure (Pv) is:

		Where	
V = Q	$PV = V^2 x p$	V = Velocity in fpm	C = 1096.7
Ā		Q = Flow in cfm	$p = Density of air in Ib/ft^3$
		$A = Area in ft^2$	Pv = Velocity pressure in inches H2O

MAINTENANCE

Since the sensing elements have no moving parts, only periodic cleaning may be required. The sensing elements should be inspected for fouling of the sensing holes as part of an annual preventative maintenance program. Installations having viscous airborne particles may require more frequent inspection. If the sensing holes on the elements have become fouled or plugged, the following procedure is recommended. Caution, all instruments must be isolated (removed) from the sensing lines prior to performing the following cleaning procedure.

Backpurging: Connect clean/dry compressed air, set at a maximum pressure of 25 psi, to the output pressure ports (total and/or static) of the sensing element being cleaned. While purging the sensing element, wipe the surface of the cylinder with a cloth or brush to loosen and remove all contaminant buildup.

Cleaning: In applications where the sensing elements are subject to viscous contaminants it is recommended that the surface be washed with a cleaning agent. The cleaning agent used must be suitable for use on the type of material the sensing element is constructed of (i.e. aluminum, stainless steel, etc.)

The Series STRA Duct Mounted Airflow Measurement Station is not field serviceable and should be returned if repair is needed (field repair should not be attempted and may void warranty). Be sure to include a brief description of the problem plus any relevant application notes. Contact customer service to receive a return goods authorization number before shipping.

©Copyright 2008 Dwyer Instruments, Inc.

Printed in U.S.A. 12/08

FR# R1-443715-00

DWYER INSTRUMENTS, INC. Phone: 219/879-8000 P.O. BOX 373 • MICHIGAN CITY, INDIANA 46361, U.S.A. Fax: 219/872-9057

www.dwyer-inst.com e-mail: info@dwyer-inst.com