

Medium Pressure Regulators

Type MR
Pressure Reducing Regulator

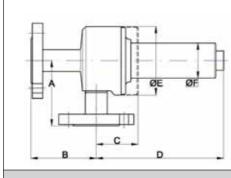
Type MS

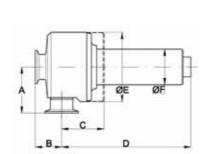
Back Pressure Regulator

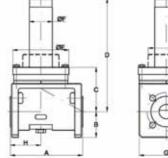
Description

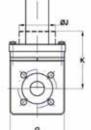
Regulators for medium pressures up to 16 bar.

The ZÜRCHER-TECHNIK pressure regulators join knowledge, experience and know-how of more than 30 years pressure regulator production and marketing.


The high demands and needs by the chemical-pharmaceutical industry have led to develop precise and corrosion resistant pressure regulators.




Pressure regulators in standard design are in use for all industrial applications. The sanitary design regulators are suitable for a variety of applications in the food & beverage, pharmaceutical and biotechnology industries.


Highlights

- Regulating range up to 16 bar / 300 psi
- Withstands full vacuum
- Self draining
- Soft seat capability for ANSI Class VI shutoff
- No guiding surface in the fluid
- Stainless steel regulators
- Nickel alloy regulators
- PVDF regulators
- Sanitary regulators
- Cleaning-in-Place (CIP)
- Steaming-in-Place (SIP)

Dimens	ions	in	mm

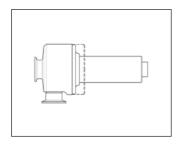
Angle Pat	tern											
Туре	metallic	Α	В	С	D	øΕ	øF	G	K	øJ	Н	Weight in kg
MR/MS 25e	Flange	100	100	64	195	114	54					8,9
MR/MS 25e	Clamp	70	40	64	195	114	54					7,7

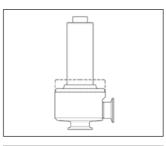
Inline Patt	tern											
Туре	PVDF	Α	В	С	D	øΕ	øF	G	K	øJ	Н	Weight in kg
MR/MS 25i	Flange	160	58	98	250	124	50	120	126	80	67,5	5,8

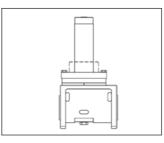
Flanges according DIN EN 1092-1-2201PN40/10

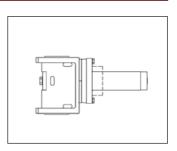
Clamp according ISO 1127-1

Technical Data

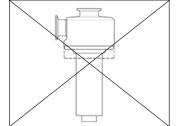

Max. inlet pressure	: 16 bar / 300 psi
	: (10 bar / 150 psi for PVDF regulators)
Max. vacuum	: Withstands full vacuum
Regulating range with springs	: 0 to 5 bar / 0 to 70 psi
Regulating range dome loaded	: 0 to 16 bar / 300 psi (0 to 10 bar /
	150 psi for PVDF Regulators)
Max. temp. FFKM (Kalrez®)	: -20°C to +160°C / -4°F to +320°F
Max. temp. FPM (Viton®)	: -20°C to +120°C / -4°F to +248°F
Max. temp. PVDF	: -20° C to $+130^{\circ}$ C / -4° F to $+260^{\circ}$ F

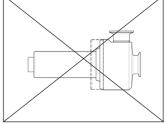

Seat tightness acc. to EN 12266-	1,						
leacking rate A, P12 / ANSI Class VI shutoff							
Flow capacity for adjustment	: 1 Nm3/h						
Certificates							
According to Pressure Equipment D	Directive: PED 97/23/EG						
Statement of Comliance	: US.FDA 21 CFR						

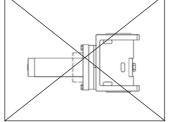

Inetallation

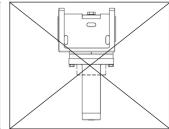

Basically the regulators may be installed in every mounting position as long as the flow direction will be as indicated on the body. To ensure selfdraining for angle pattern design regulators, they should be installed shown as follows. Inline design regulators (PVDF) are not selfdraining. The regulators should be installed, that the springhousing ventbore is protected from anything that might interfere with it.

Work Certificate



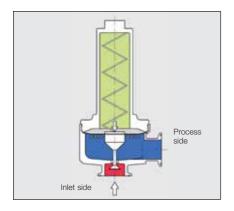






: EN10204 3.1

zürcher-technik tel. +41 (0)61 975 10 10


ag für industrietechnik fax +41 (0)61 975 10 50

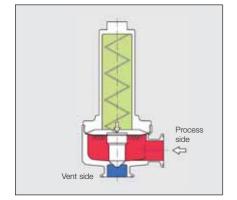
neumattstrasse 6 info@zuercher.ch

ch-4450 sissach www.zuercher.ch

Ц	J	
Ŷ	ì	
2	≺	
-	۲.	
Ω	7	
	כ	
5	Š	
5	ζ	
-	2	

. Fu	nctions	2. C	onnections	3. B	odies	4. A	ccessories
MR	Reducer	Α	ANSI Flanges 150 lbs	S	316 L (1.4404)	н	Heating Jacket
MRC	Sanitary-Reducer	D	DIN Flanges PN16 / PN10	Н	Nickel alloy	Р	Adjusted and Sealed
Р	Pilot Pressure Design	C1	Clamp ISO 1127-1	Р	PVDF	М	Pressure Gauge
		C2	Clamp DIN 32676	Х	Special	V	Pressure Gauge Fitting
MS	Back Pressure Regulator	СЗ	Clamp OD / ASME			х	Special
MSC	Sanitary-Back Pressure Regulator	C4	Clamp SMS	Trim	n Parts		
Р	Pilot Pressure Design	C5	Food Union DIN 11851	S	316 L (1.4404)		
		G	BSP Thread fem	Н	Nickel alloy		
		N	NPT Thread fem	Р	PVDF		
		S	Flanges with slot DIN 2512	Х	Special		
		х	Special				
Sizes	S	Seat	s Ø	Sea	ts O-Ring		
25	DN 25 (1")	(06,10	0,14)R Direct Action	K	FFKM (Kalrez® 6375)		
		(14,2	1)S Relief Seat	V	FPM (Viton®)		
				С	FFKM FDA (Kalrez® 6221)		
				Х	Special		
		Sprii	ngs				
Patte	erns	L	0.04 to 0.25 bar / 0. to 0.15 psi	Diap	ohragms		
i	Inline Pattern	Α	0.15 to 1 bar / 1.5 to 15 psi	Р	PTFE		
е	Angle Pattern	В	0.4 to 3 bar / 6 to 40 psi	V	FPM		
		С	0.6 to 5 bar / 12 to 70 psi	E	EPDM white FDA		
		J	Dome Loaded	Х	Special		
		Х	Special				

D06RA


SSVV

MR25e

Reducing Regulator Function

4 Adjusted and lead sealed

Spring-loaded pressure reducing regulators are "relative pressure regulators", designed to keep the process pressure at a constant level. The nominal pressure is set by means of the setscrew, located at the spring housing. When at rest, the regulator remains in an open position. When the pressure rises, pressure is released through the open valve seat to the process side of the valve underneath the diaphragm. This will continue, until the diaphragm force exceeds the spring force, while the process pressure rises. The diaphragm is lifted and the valve seat closes. In the event that the process pressure drops below the preadjusted nominal pressure, the spring force presses the diaphragm downwards, so that the valve seat opens and admits gas until pressure equalization is reached again.

Back Pressure Regulator Function

Spring-loaded back pressure valves are "relative pressure regulators", designed to keep the process pressure at a constant level. The nominal pressure is set by means of the setscrew, located at the spring housing. When at rest, the regulator remains in a closed position. If the process pressure increases, the force underneath the diaphragm increases as well. If the diaphragm force exceeds the spring force, the valve seat opens and the over pressure is discharged to the vent side. If the process pressure drops, the diaphragm force is lower compared to the spring force and the valve seat closes. The pressure in the vent line can be atmospheric or vacuum. With vacuum in the vent line the flow capacity of the regulator is increased.

psi

Inlet pressure P1 in bar g	1	2	3	4	6	10	Seat Ø	Kv	DN
Outlet pressure DO	0.85	1.5	1.9	2.2	2.8	3.7	6 mm	1.2	
Outlet pressure P2	2.1	3.6	4.7	5.6	7	9.2	10 mm	3	25
0.5 bar g	3.5	6.1	7.9	9.3	11.7	15.4	14 mm	5	
Outlet areas up DO	-	1.2	1.7	2	2.6	3.6	6 mm	1.2	
Outlet pressure P2	-	3	4.2	5.2	6.7	9	10 mm	3	25
1 bar g	_	5	7	8.6	11.1	15	14 mm	5	
Outlet areas up DO	-	-	_	1.7	2.4	3.4	6 mm	1.2	
Outlet pressure P2	-	-	-	4.2	6	8.4	10 mm	3	25
2 bar g	-	-	-	7.1	10	14.1	14 mm	5	
Outlet areas up DO	-	-	-	-	1.7	2.9	6 mm	1.2	
Outlet pressure P2	-	-	-	-	4.2	7.3	10 mm	3	25
4 bar g	_	-	-	-	7.1	12.2	14 mm	5	
	Q	= Wat	t er in m	n³/h at	20 °C				

Inlet pressure P1 in bar g	1	2	3	4	6	10	Seat Ø	Kv	DN
Outlet pressure P2	24	40	50	62	70	78	6 mm	1.2	
0.5 bar q	58	100	120	152	175	190	10 mm	3	25
0.5 bar g	98	170	210	255	290	320	14 mm	5	
Outlet pressure P2	-	38	54	67	76	85	6 mm	1.2	
·	_	95	135	165	190	210	10 mm	3	25
1 bar g	_	155	225	270	310	350	14 mm	5	
Outlet pressure P2	_	-	46	66	80	92	6 mm	1.2	
2 bar q	_	-	92	165	200	230	10 mm	3	25
2 Dai y	-	-	115	270	335	380	14 mm	5	
Outlet pressure P2	_	-	-	54	66	80	6 mm	1.2	
3 bar q	-	-	-	135	170	200	10 mm	3	25
o bar y	_	-	-	225	270	335	14 mm	5	
Outlet myseevine DO	-	-	-	-	60	185	6 mm	1.2	
Outlet pressure P2 4 bar q	_	-	-	-	135	210	10 mm	3	25
4 Dar g	_	_	_	_	250	350	14 mm	5	
		Q =	Steam	ı in kg/	h				

Back Pressure Regulator

Set pressure P1 in bar g	1	2	3	4	6	10	Seat Ø	Kv	DN
Outlet pressure P2									
atmospheric	80	360	480	600	810	1200	21 mm	9	25
Set pressure P1 in bar g	1	2 = Air	in Nm ³	/h bei 2	6 6	10	Seat Ø	Kv	DN
Set pressure P1 in bar g Outlet pressure P2	1	2	3	4	6				
						28.5	Seat Ø	Kv 9	DN 25

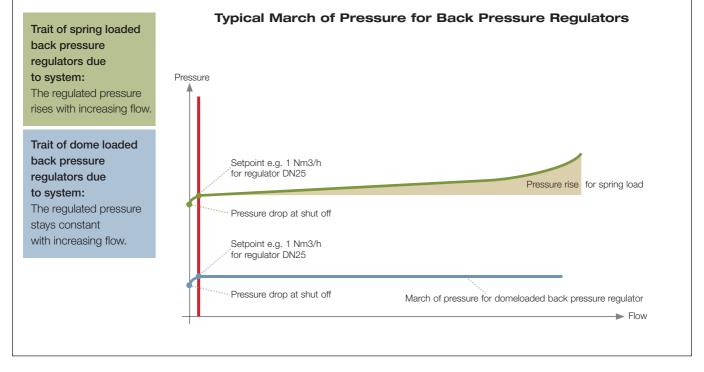
Pressure Reducing Regulator

Inlet pressure P1 in psi g	15	29	44	58	87	145	Seat Ø	Cv	DN
Outlet process up DO	22	48	64	80	112	176	6 mm	1.4	
Outlet pressure P2	40	120	160	200	270	400	10 mm	3.5	25
7 psi g	96	200	270	335	470	740	14 mm	5.8	
0.41-4	-	45	64	80	112	176	6 mm	1.4	
Outlet pressure P2	-	113	160	200	270	400	10 mm	3.5	25
15 psi g	-	190	270	335	470	740	14 mm	5.8	
O. Ht D0	-	-	53	80	112	176	6 mm	1.4	
Outlet pressure P2	-	-	135	200	270	400	10 mm	3.5	25
29 psi g	-	-	230	335	470	740	14 mm	5.8	
0. #-4	-	-	-	-	100	176	6 mm	1.4	
Outlet pressure P2	-	-	-	-	250	400	10 mm	3.5	25
58 psi g	-	-	-	-	425	740	14 mm	5.8	
	-	Q = Air	in Nm	³/h at 2	0 °C				

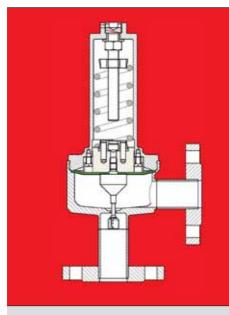
Inlet pressure P1 in psi g	15	29	44	58	87	145	Seat Ø	Cv	DN
Outlet sween me DO	0.85	1.5	1.9	2.2	2.8	3.7	6 mm	1.4	
Outlet pressure P2	2.1	3.6	4.7	5.6	7	9.2	10 mm	3.5	25
7 psi g	3.5	6.1	7.9	9.3	11.7	15.4	14 mm	5.8	
Outlet masses as DO	-	1.2	1.7	2	2.6	3.6	6 mm	1.4	
Outlet pressure P2	-	3	4.2	5.2	6.7	9	10 mm	3.5	25
15 psi g	-	5	7	8.6	11.1	15	14 mm	5.8	
Outlet pressure DO	_	-	-	1.7	2.4	3.4	6 mm	1.4	
Outlet pressure P2	-	-	-	4.2	6	8.4	10 mm	3.5	25
29 psi g	-	-	-	7.1	10	14.1	14 mm	5.8	
Outlet pressure DO	-	-	-	-	1.7	2.9	6 mm	1.4	
Outlet pressure P2	-	-	-	-	4.2	7.3	10 mm	3.5	25
58 psi g	-	-	-	-	7.1	12.2	14 mm	5.8	
	C) = Wat	ter in m	n³/h at :	20 °C	•			

Inlet pressure P1 in psi g 15 29 44 58 87 145 Seat Ø Cv DN Outlet pressure P2 7 psi g 24 40 50 62 70 78 6 mm 1.4 58 100 120 152 175 190 10 mm 3.5 98 170 210 255 290 320 14 mm 5.8

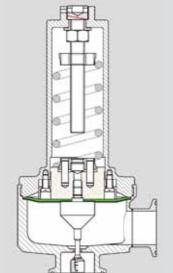
7 001 0								0.0	20
7 psi g	98	170	210	255	290	320	14 mm	5.8	
Outlet mysessum DO	_	38	54	67	76	85	6 mm	1.4	
Outlet pressure P2 15 psi g	-	95	135	165	190	210	10 mm	3.5	25
	-	155	225	270	310	350	14 mm	5.8	
Outlet pressure P2 29 psi g	_	-	46	66	80	92	6 mm	1.4	
	-	-	115	165	200	230	10 mm	3.5	25
	-	-	92	270	335	380	14 mm	5.8	
Outlet pressure P2	_	-	-	54	66	80	6 mm	1.4	
	-	-	-	135	270	200	10 mm	3.5	25
44 psi g	-	-	-	225	270	335	14 mm	5.8	
Outlet pressure P2 58 psi g	_	-	-	-	60	185	6 mm	1.4	
	-	-	-	-	135	210	10 mm	3.5	25
	-	_	_	_	250	350	14 mm	5.8	
Q = Steam in kg/h									


Back Pressure Regulator

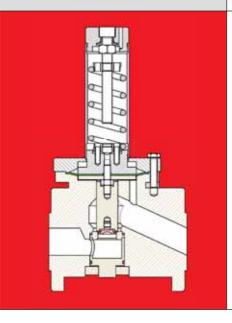
Set pressure P1 in psi g	15	29	44	58	87	145	Seat Ø	Cv	DN
Outlet pressure P2 atmospheric	80	360	480	600	810	1200	21 mm	10.5	25
Q = Air in Nm³/h bei 20 °C									
Set pressure P1 in psi g	15	29	44	58	87	145	Seat Ø	Cv	DN
Set pressure P1 in psi g Outlet pressure P2 atmospheric	15	12.7	15.3	58	22	145 28.5	Seat Ø 21 mm	Cv 10.5	DN 25


Every regulator will be tested and adjusted on our testing bay.

The adjustment is usually done with a flow rate of 1 Nm3/h (marked by the red line). The following diagrams show the normal characteristics of pressure regulators due to system.



Technical Data


Standard Design

Application	For processes in the chemical-pharmaceutical industries, without increased requirement.
Example of uses	Regulating processes for liquids, steam and gases without special requirements concerning cleaning and dead space.
Design	Angle pattern
Surfaces	Metallic regulators inside < Ra 3.2 μm
Complete drain	Yes

Sanitary Design

Application	For procedures in the pharmaceutical, biotechnology and food industries with increased requirements concerning surface treatment, dead space and cleaning.
Example of uses	A typical use of those regulators is the pressure regulation of clean steam.
Design	Angle pattern
Specials	No edges, no dead space
Surfaces	Areas in contact with media < Ra 0.8 µm or better, internal and external electroposishing as option.
Complete drain	Yes

Chemical Design

Application	For processes in the chemical-pharmaceutical industries, with increased requirement concerning corrosion resistance.
Example of uses	Regulating processes for aggressive fluids and gases without special requirements concerning cleaning and dead spaces.
Design	Inline pattern
Surfaces	PVDF regulators inside < Ra 6.4 µm
Complete drain	No

Size: DN25 (1")

Seat: 6 mm, 10 mm, 14 mm (Reducer Seat)

14 mm, 21 mm (Relief Seat)

Standard Finish: Areas in contact with medium < Ra 3.2 µm

Material:

Body: 316L (1.4404) or nickel alloy

Spring housing: 316 (1.4408)

316L (1.4404) or nickel alloy Inner parts:

FPM (-20°C to +120°C / -4°F to +248°F) Diaphragm: PTFE (-20°C to +160°C / -4°F to +320°F) Seat O-Ring:

FPM (-20°C to +120°C / -4°F to +248°F) FFKM (-20°C to +160°C / -4°F to +320°F)

Connection: Flanges ANSI 300lbs / DIN PN16

Thread fem. BSP / NPT or other connections

Inlet-Pressure: max. 16 bar / 300 ps

Spring loaded: max. 5 bar / 70 psi Range:

Dome loaded: max. 16 bar / 300 psi

MRC and MSC (Sanitary Design)

MR and MS (Standard Design)

in dome laded version.

Pressure regulators in standard designe to regulate

pressures from 0.15 bar / 1.5 psi up to 5 bar / 70 psi

in spring loaded version and up to 16 bar / 300 psi

Stainless steel sanitary regulators are used in a variety of pharmaceutical and food and beverage applications. No guiding surfaces in the fluid.

This regulators are all self draining.

The internal space is designed for sanitary conditions.

Size: DN25 (1")

Seat: 6 mm, 10 mm, 14 mm (Reduce Seat)

14 mm, 21 mm (Relief Seat)

Standard Finish: Areas in contact with medium < Ra 0.8 µm.

Internal and external electropolishing as option

Material:

316L (1.4404) or nickel alloy Body:

Spring housing: 316 (1.4408)

Inner parts: 316L (1.4404) or nickel alloy

Diaphragm: EPDM white FDA (-20°C to +120°C / -4°F to +248°F) Seat O-Ring: FFKM (-20°C to +160°C / -4°F to +320°F)

Quick disconnect fittings as example Clamp fittings Connection:

Food Union DIN 11851 or other connections

Inlet-Pressure: max. 16 bar / 300 ps

Spring loaded: max. 5 bar / 70 psi Range: Dome loaded: max. 16 bar / 300 psi

Size: DN25 (1")

Seat: 6 mm, 10 mm, 14 mm (Reduce Seat)

14 mm, 21 mm (Relief Seat)

Standard Finish: Areas in contact with medium < Ra 6.4 μ m.

Material:

PVDF (-20°C to +130°C / -4°F to +260°F) Body:

Spring housing: 316 (1.4408) Inner parts: PVDF Diaphragm: PTFF Seat O-Ring: **FFKM**

Connection: DIN Flanges PN10 Inlet-Pressure: max. 10 bar q

Spring loaded: max. 5 bar / 70 psi Range:

Dome loaded: max. 10 bar / 150 psi

MR and MS (Chemical Design) Pressure regulators in chemical design for use in chemical and pharmaceutical industries, specially in processes with aggressive media.

2001/05.08/E

Quality commitment "Made in Switzerland"

For more than 50 years, the Swiss quality logo "Made in Switzerland" stands for precision and Top quality. The ZÜRCHER-TECHNIK pressure Regulators have been developed and are being manufactured in Switzerland. We do believe in the manufacturing location Switzerland, its competitive and know-how leadership.

The Zürcher-Technik pressure regulator knowledge, experience and know-how is a result of more than 30 years pressure regulator production and marketing.

Zürcher-Technik develops, designs and produces pressure regulators in Switzerland for global marketing and distribution.

The high demands and needs by the chemical-pharmaceutical industry have led to the development of precise, corrosion resistant and FDA conforming pressure regulators. Special attention hereby was given to the range of blanketing applications (mixers, tanks, centrifuges, containers, etc.)

Zürcher-Technik welcomes competition and is happy to meet their challenge. Our mission statement: In the long run, a company's survival and well being depends on its capability to come up with more innovative solutions than its competitors. Quality of our service, highest level or product reliability, dependable performance and customer satisfaction represent the key portion of our daily challenge.

Our product range in Tank Blanketing Regulators

Tank blanketing, or padding, is the process and practice of covering a stored commodity, usually a liquid, with a gas. It is the best prevention of and protection against explosions. If the commodity is volatile or toxic, tank blanketing can prevent it from harming workers, equipment and the environment. When the commodity is a food or other substance, blanketing protects it from oxidation or contamination though exposure to air or moisture.

zürcher-technik tel. +41 (0)61 975 10 10

ag für industrietechnik fax +41 (0)61 975 10 50

neumattstrasse 6 info@zuercher.ch

ch-4450 sissach www.zuercher.ch